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ABSTRACT
Geopolymer concrete offers a promising alternative to traditional Portland cement concrete, 
exhibiting comparable mechanical and durability performance while reducing environmental 
impacts. However, its mechanical and durability properties depend on many factors, such as the 
water/binder ratios, concentration of activator and curing temperatures. This study proposes using an 
unsupervised Artificial Neural Network (ANN) Self-Organizing Map (SOM) to predict the factors 
that control the durability of geopolymer concrete in a chloride environment based on experimental 
datasets. This research aims to identify the impact of various water-to-binder ratios and molarity of 
activators on the durability of geopolymer concretes by applying the Growing Self-Organizing Maps 
(GSOM) model to predict the durability of the design mix. A series of geopolymer concrete mixes 
with varying water-to-binder (w/b) ratios and activator molarity were prepared to achieve these 
goals. These cylindrical samples of 100 mm height × 50 mm diameter size were cured for 24 hours 
at 80°C and subject to chloride migration test at 28-day curing age. The data collected was analyzed 
and modeled using statistical methods and machine learning techniques, i.e., SOM modeling. This 
modeling approach effectively revealed patterns and relationships within the dataset, providing 

crucial insights into the chloride migration 
behavior. Based on the GSOM modeling, this 
study highlights efficient data analysis, pattern 
recognition, and optimization of outcomes, such 
as geopolymer concrete durability prediction in 
a chloride environment based on the selected 
parameters. 

Keywords: Artificial Neural Network (ANN); 
durability; geopolymer concrete; Self-organizing 
map (SOM)
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INTRODUCTION

Geopolymer concrete represents an innovative and sustainable paradigm in construction 
materials. It departs from the dependency on conventional Portland cement-based concrete 
by utilizing industrial byproducts, natural sources, or waste materials with high silica 
and alumina content, such as fly ash, slag, and metakaolin (Cong & Cheng, 2021). The 
precursors go through a geopolymerization process, where these source materials react 
with an alkaline activator solution, typically composed of sodium hydroxide (NaOH) 
and sodium silicate (Na2SiO3). During geopolymerization, these constituents undergo a 
chemical transformation, forming a robust three-dimensional network of interconnected 
polymeric chains, which serve as the binding matrix for the concrete (Gunasekara et al., 
2019). This unique chemistry not only reduces the environmental footprint by diminishing 
carbon dioxide emissions related to traditional Portland cement production but also offers 
geopolymer concrete with remarkable attributes, including exceptional fire resistance (Cong 
& Cheng, 2021), rapid early strength development (Amran et al., 2021), and formidable 
resistance to chemical aggression (Wong, 2022), making it an eco-friendly and high-
performance choice for various construction applications. 

Chloride-induced corrosion of steel reinforcement in concrete is primarily attributed 
to the penetration of chloride ions into the concrete matrix. This penetration is influenced 
by several factors, including the chloride ion concentration at the surface of steel, with 
critical levels around 0.4% by weight of cement being a potential threshold for corrosion 
initiation (Zofia & Adam, 2013). The porosity of concrete plays a pivotal role in facilitating 
chloride ingress. Chloride ions permeate concrete through three key mechanisms: capillary 
absorption, hydrostatic pressure, and diffusion. The predominant mechanism is diffusion, 
driven by concentration gradients and dependent on factors such as ion concentration 
differences and continuous pore fluid Sirivivatnanon and Khatri (2011), and Shobeiri et 
al. (2021). It occurs predominantly in submerged conditions, where the concentration 
disparity between contaminated and uncontaminated surfaces and the diffusion coefficient 
determine the ingress rate. Concrete, characterized by solids and voids filled with fluid 
and air, can also experience chloride penetration due to hydraulic pressure caused by the 
presence of chloride ions at the concrete surface (Halim et al., 2017). Capillary absorption 
relies on moisture gradients to facilitate chloride ion movement into concrete pores (Titi 
& Tabatabai, 2018).

Several critical factors influence the durability of geopolymer concrete, and one of the 
most significant concerns is the risk of chloride-induced corrosion. This corrosion process 
can be complex and is influenced by several key factors (Chen et al., 2021; Chindaprasirt & 
Chalee, 2014). The initial chloride concentration in the environment, the exposure duration, 
the geopolymer concrete's specific mix design, and the prevailing environmental conditions 
all play vital roles (Tennakoon et al., 2017; Titi & Tabatabai, 2018).
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The main aim of this study is to adopt machine learning methods to predetermine 
the chloride permeability durability of geopolymer concrete. Artificial intelligence 
(AI) is revolutionizing engineering by streamlining tasks and optimizing the design 
and maintenance of engineering systems. AI algorithms can efficiently analyze large 
datasets to recognize patterns and make predictions, offering a wide range of applications, 
including complex system design, predictive maintenance, and more (Huang et al., 2015). 
As AI technology continues to advance, it is expected to profoundly impact the field of 
engineering. In geopolymer concrete durability prediction in chloride-rich environments, 
machine learning techniques, including artificial neural networks (ANNs), support vector 
machines (SVMs), random forests, and decision trees, are employed to develop predictive 
models. These models rely on comprehensive datasets, including concrete composition, 
preparation techniques, testing conditions, and chloride penetration test results. The 
successful implementation of machine learning models has the potential to significantly 
enhance the safety and longevity of concrete structures by providing engineers and 
designers with precise insights into material behavior under varying conditions (Pavithra et 
al., 2016). While machine learning models can significantly contribute to our understanding, 
it's important to acknowledge the complexity of real-world scenarios and the need for 
continued research and refinement in this field. 

In the field of machine learning, two fundamental approaches are supervised and 
unsupervised learning (Rahmatbakhsh et al., 2021). Supervised learning utilizes labeled 
data to learn a set of training data samples and classify them based on their labels, which 
is useful for precise predictions. On the other hand, unsupervised learning (often known 
as clustering) uncovers the hidden patterns from the set of training data samples and 
partitions similar patterns into a cluster of similar patterns (Padmapoorani et al., 2023). 
The self-organizing feature of an AI algorithm has exhibited a remarkable ability to retain 
the information acquired from the learning of the data samples that are used to adjust 
responses of presented data samples. While the labeled data samples are hardly (expensive) 
to be acquired in geopolymer concrete studies, clustering serves as a better alternative in 
this study. 

The Self-Organizing Map (SOM) is adopted for its unique feature of clustering high-
dimensional data onto a low-dimensional (2D) topological map. While the topological map 
consists of a number of nodes (clusters) that are self-organized according to the topological 
relationship among the data samples, visualizing the 2D topological map provides useful 
insights into the data structure. It potentially reveals the hidden message for knowledge 
discovery, especially in the geopolymer concrete study. Kalteh et al. (2008) outlined a 
structured approach involving data gathering and normalization, training the SOM, and 
extracting information from it. These steps enable visualizing data patterns, grouping data 
through clustering, and identifying distinct clusters for further analysis. Extracting the 
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hidden message from a SOM model may include deriving a rule-based model at the clusters 
that precisely describes and/or predicts geopolymer concrete's diffusion coefficient across 
various mixing designs. Ensuring the consistency of mixed designs with experimental data 
and assessing the reliability of these designs in guiding specific chloride permeability levels 
are crucial. It is particularly significant given the potential variations and parameters that 
may not be explicitly accounted for in the training data (Colantonio et al., 2021).

The adoption of SOM extends to the design of geopolymer concretes, with researchers 
exploring its structural potential, driven by the growing interest in SOM clustering. The 
previous focus of the geopolymer concrete study included analyzing micro-scale materials 
like the composition and structure of aluminosilicate precursors, the distribution of reaction 
products, and the development of pore structures at the micro level. Based on these findings, 
current research trends are focused on investigating the performance of nano-silica or 
nano-alumina additives on the microstructure and properties of geopolymer concrete at a 
larger scale (Mayhoub et al., 2021). Additionally, there is growing interest in studying the 
influence of activator solution concentration at the micro level and the impact of curing 
temperature on microstructural development, as these factors could offer valuable insights 
into the material's behavior in practical construction applications. Among the researchers, 
the geopolymer concrete durability characteristics are of most interest, particularly in the 
impact of chloride attack (Pasupathy et al., 2021) on compressive strength and chloride 
binding capacity of fly ash geopolymers under varied curing conditions. 

Limited research papers reportedly refine the geopolymer concrete parameter settings to 
enhance strength (Mohammed et al., 2021), durability (Huseien & Shah, 2020) and energy 
efficiency (Chen et al., 2021). Therefore, the development of the SOM model can reveal 
the underlying information, such as mixed proportions. The modeling uses geopolymer 
concrete data, such as compressive strength or penetration depth of ionic species. This 
paper explores how SOM models predict the durability of fly ash geopolymer concretes 
in chloride. 

EXPERIMENTAL METHOD

Raw Materials

The raw precursor used in this study is Class F fly ash obtained from Sejingkat Power 
Station, Kuching, Sarawak, Malaysia. The chemical composition of the raw material is 
shown in Table 1 and was classified according to ASTM C618. Two types of alkaline were 
used in a combination of NaOH and sodium silicate (Na2SiO3) at a 1:0.5 mass ratio. Only 
coarse aggregates of 20 mm maximum size were used to ensure homogeneity and fine 
aggregates were also used through a 4.75mm sieve. 
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Samples and Testing

Table 2 shows the mixed proportions to make the fly ash geopolymer concretes. The 
geopolymer concrete was mixed using a concrete mixer, cast into a 100 mm × 200 mm 
height cylinder mold and vibrated using a vibrator for about 15 s. This vibration process 
was to ensure that the geopolymer concrete was fully compacted. Then, the samples were 
cured at 80°C for 24 h in a curing oven. After demolding, the samples were sealed to prevent 
moisture loss until the age of testing, which is on day 28 for the chloride migration test. A 
total of 162 samples were prepared as training data sets. 

Chloride Diffusion Experiment

The diffusion of chloride was conducted according to non-steady state migration—NT 
BUILD 492 (Nordic Council of Ministers, 1999). Figure 1 shows the experiment setup, 
which uses external electrical potential to allow chloride ions to penetrate the specimen. 
After 24 hours, the specimens were split and sprayed with silver nitrate solution. The 
white precipitates indicate the presence of silver chloride precipitates at the split surface, 
indicating chloride penetration.

Figure 1. Nord Test Method Sample Migration Setup

Figure 2 compares chloride penetration depth and chloride diffusion coefficients in 
geopolymer samples as a function of water-to-binder ratios and molarity. These data sets 
from 162 samples were used in the SOM prediction model. 
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Figure 2. Chloride Penetration Depth and Coefficients as a function of w/b ratio and molarity

Self-Organizing Maps (SOM)

In this study, Self-Organizing Maps (SOM) are pivotal in determining the optimal mixing 
design for geopolymer concrete. The dataset used in this analysis has been meticulously 
assembled through rigorous experiments and testing procedures. An array of activator 
mixing design variations was systematically applied to geopolymer concrete samples. 
In total, this comprehensive approach encompassed a total of 162 individual specimens. 
Each of these distinct combinations underwent chloride permeability testing after a 28-
day curing period. This dataset serves as the cornerstone for SOM analysis, enabling 
in-depth exploration of the intricate relationships between mixing design elements and 
chloride permeability (Stryhal & Plavcová, 2023). Data preprocessing, a vital step in any 
analytical process, including SOM modeling, involves meticulous data preparation, quality 
assurance, and necessary transformations. In this particular study, data preprocessing 
incorporates a normalization procedure, which scales the data to a standardized range to 
ensure that all variables contribute equally to shaping the SOM model (Alahakoon et al., 
2000). Data preprocessing is instrumental because variables may have dissimilar scales, 
and normalization mitigates the risk of one variable overshadowing others due to its larger 
values (Mehta et al., 2017). 
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Growing Self-Organizing Maps (GSOM) is a variant of Self-Organizing Maps (SOM) 
that can dynamically adjust their size during learning. Unlike traditional SOMs, GSOMs 
can grow or shrink in response to the input data, allowing them to adapt and represent 
complex structures more effectively (Alahakoon et al., 2000). The primary advantage of 
GSOM is its capability to automatically expand the map size in regions of high data density, 
thereby enhancing its ability to capture intricate patterns.

The GSOM begins by normalizing a dataset from a collection data sample to a range 
of [0,1]. Then, a map size of (1×1) is initiated, where the initial prototype weight vector 
is randomly assigned within the normalized data space. Then, SOM’s learning process 
is conducted by fetching one data sample at a time. Similarity measures are conducted, 
using Equation 1, on the data sample to determine the best-matching-unit (BMU) among 
the nodes in the map size. Then, update the BMU node to move the node towards the data 
sample using Equations 2 and 3. Repeat the SOM’s learning process by fetching the next 
data sample until all data samples are learned. Learning of the normalized data samples 
is repeated at the next learning epoch(s) until the prototype weight vectors are converged 
(i.e., no changes after each learning). Determine a hit sample count at all nodes to identify a 
row (or column) of maximum hit sample counts from the map size. Duplicate the identified 
row (or column) nodes’ prototype weight vectors with a new row (or column) of nodes that 
are positioned next to the identified row (or column) to increase the map size. Repeat the 
SOM’s learning process until the maximum hit sample counts (in row and column nodes) 
are less than a preset threshold value.

The proposed GSOM procedure for geopolymer concrete analysis involves mainly 
nine steps.

In step 1, the GSOM is initialized with two nodes or clusters, where a random valued 
prototype weight vector, 𝒘𝒘𝑗𝑗 = �𝑤𝑤𝑗𝑗 ,1, … ,𝑤𝑤𝑗𝑗 ,𝑝𝑝�, 𝑗𝑗 = {1,2},  , is assigned as the centroid of 
the cluster.

In step 2, a collected data set is fed for learning on the cluster created. The data set 
consists of n data samples of p parameter settings of water/binder ratio, molarity, activator 
NaOH, activator Na2SiO3, water, and chloride diffusion coefficient, where each parameter 
value is normalized to a range of [0,1] to ease the similarity test in the next step. The 
normalizing method divides the real parameter value by a maximum constant.  

In step 3, the learning of GSOM begins with a similarity test on a data sample, 
, , on the available clusters using Equation 1.on the available clusters using Equation 1. 

𝑑𝑑�𝒙𝒙𝑖𝑖 ,𝒘𝒘𝑗𝑗� = ���𝑥𝑥𝑖𝑖,𝑘𝑘 − 𝑤𝑤𝑗𝑗 ,𝑘𝑘�
2

𝑝𝑝

𝑘𝑘=1

2

 

 

Step 9 selects a winner, 𝐽𝐽, among the clusters using Equation  

 [1]



Durability of Geopolymer Concretes via Self-Organizing Maps

413Pertanika J. Sci. & Technol. 33 (1): 405 - 421 (2025)

Step 9 selects a winner, J, among the clusters using Equation 2. 

 [2]

In step 5, the winner cluster and its adjacent clusters are updated with Equations 3 
and 4, where  is the topological-based learning rate that is obtained by calculating the 
distance between the adjacent J-th node (NJ) and winner J-th node (NJ) on the topological 
map. Let j = J of Equation 3 update the winner cluster’s prototype weight vector, and  of 
Equation 4 is at the maximum of the learning rate ( = α). At the same time, an adjacent 
node’s prototype weight vector ( ) is updated with a lower h_JJ < α for the self-organizing 
feature. α, σ ∈ [0,1] are the learning rate and adjacent width that are monotonically reduced 
over the period of learning.  

ally reduced over the period of learning.   

𝒘𝒘𝑗𝑗 = 𝒘𝒘𝑗𝑗 + ℎ𝑗𝑗𝐽𝐽 �𝒙𝒙𝑖𝑖 − 𝒘𝒘𝑗𝑗 �  
(3) 

ℎ𝑗𝑗𝐽𝐽 = 𝛼𝛼 exp�− �𝑁𝑁𝑗𝑗 − 𝑁𝑁𝐽𝐽�
2

2𝜎𝜎2
� � 

 
(4) 

In step 6, a hit sample counter of 𝑁𝑁𝐽𝐽  is incremented  

 [3]

ally reduced over the period of learning.   

𝒘𝒘𝑗𝑗 = 𝒘𝒘𝑗𝑗 + ℎ𝑗𝑗𝐽𝐽 �𝒙𝒙𝑖𝑖 − 𝒘𝒘𝑗𝑗 �  
(3) 

ℎ𝑗𝑗𝐽𝐽 = 𝛼𝛼 exp�− �𝑁𝑁𝑗𝑗 − 𝑁𝑁𝐽𝐽�
2

2𝜎𝜎2
� � 

 
(4) 

In step 6, a hit sample counter of 𝑁𝑁𝐽𝐽  is incremented  

 [4]

In step 6, a hit sample counter of NJ is 
incremented to determine the size of the cluster.

In step 7, go to step 2 with the subsequent data 
sample , , until ..

In step 8, the hit sample counters are evaluated 
for the growth of nodes. A row or a column of new 
nodes is inserted to retain the topological feature 
of the previous map. The row of nodes is inserted 
to the west side of the row with the maximum 
total hit sample counts, and their prototype weight 
vectors are initiated from the rows. Otherwise, a 
column of nodes is inserted to the north side of 
the column with the maximum total hit sample 
counts, and their prototype weight vectors are 
initiated from the columns.  

In step 9, go to step 2 fetch .  
These steps are recursively conducted until 

the hit sample count of all nodes does not exceed 
the maximum count. Figure 3 summarizes the 
overall steps. Figure 3. Flow chart of Growing SOM
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RESULTS AND DISCUSSION

SOM Simulation

From MATLAB, the SOM model was trained using a 5 × 5 map size, resulting in a grid 
of 25 neurons arranged in a hexagonal structure, as shown in Figure 4. Each neuron 
represented specific combinations of activator dosages and chloride permeability. The 
hexagonal topology allowed information exchange between adjacent neurons, aiding self-
organization and learning.

(a)

(b)
Figure 4. Self-organizing map (SOM) topology; (a) 5 × 5 map and (b) hit map
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Hit maps were generated, as per Figures 4(a) and 4(b), revealing how the input data 
was distributed within clusters to assess the model's effectiveness. These maps also assessed 
the quality of clustering, with clusters 3 and 5 receiving more hits, indicating their better 
representation of common patterns in the data. However, some clusters lacked associated 
datasets, suggesting that the chosen number of clusters may not have been ideal for 
capturing distinct variations in the data. Overall, SOM analysis offered valuable insights into 
mixing design patterns, emphasizing the importance of precise mix design considerations 
to achieve durable and structurally sound geopolymer concrete compositions. 

Meanwhile, the SOM neighbor weight distance analysis assesses the likeness or 
disparity between neighboring neuron weight vectors, determining the input's influence on 
each neuron's output (Figure 5). The weight distances were calculated using the Euclidean 
distance of Equation 1. 

Using the SOM library in MATLAB, these neighbor weight distances are visualized 
using a colormap, as depicted in Figure 5. The dark shade represents the least relevance 
between the nodes, while the light shade represents the highest relevance of the nodes. This 
colormap provides a graphical illustration for identifying clusters of similar information 
or the relevant geopolymer concrete characteristics. For instance, r_9 and r_10 are the 
relevant nodes indicated in the colormap figure.  

Figure 5. SOM neighbor weight distances

Deriving insights from a trained SOM requires some post-processing to create a cluster 
“recipe” or mix proportion chosen for its accuracy in predicting the durability of geopolymer 
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concrete under various chloride exposure conditions. Ensuring alignment with experimental 
data and providing reliable recommendations for achieving specific durability levels is 
crucial. The recipe's robustness is also considered, aiming to offer reliable suggestions for 
datasets beyond those used for training.

Prediction from SOM 
Table 3 shows the prototype weight vectors of SOM, but Table 4 illustrates their 
implications. Each element of the prototype weight vectors is interpreted in terms of the 
water/binder ratio, molarity, water volume in units of ml, NaOH in units of g, and chloride 
diffusion coefficient in units of m2/s parameters, respectively. 

Table 3  
Weight vectors of 5x5 nodes rounded to the nearest 4 decimal places from SOM in MATLAB

j wj,1 wj,2 wj,3 wj,4 wj,5 wj,6

1 1 0.6667 0.6641 0.6641 1 0.8546
2 0.8947 0.6686 0.6115 0.6115 0.8947 0.8678
3 0.8000 0.6667 0.5308 0.5308 0.8000 0.8916
4 0.6909 0.6667 0.4587 0.4580 0.6909 0.8355
5 0.6000 0.6667 0.3987 0.3974 0.6000 0.8174
6 0.9744 0.7564 0.7325 0.7325 0.9744 0.8118
7 0.8000 0.8333 0.6641 0.6641 0.8000 0.8237
8 0.8000 0.7500 0.5974 0.5974 0.8000 0.8127
9 0.6000 0.6667 0.3987 0.3974 0.6000 0.4619
10 0.6000 0.6667 0.3987 0.3974 0.6000 0.6702
11 1 0.8333 0.8308 0.8308 1 0.7429
12 0.8974 0.8675 0.7754 0.7754 0.8974 0.7049
13 0.8000 0.8333 0.6641 0.6641 0.8000 0.6459
14 0.6741 0.8457 0.5666 0.5666 0.6741 0.7314
15 0.6000 0.8333 0.4974 0.4974 0.6000 0.7951
16 1 1 1 1 1 0.4399
17 0.8000 1 0.7974 0.7974 0.8000 0.6032
18 0.8000 0.8333 0.6641 0.6641 0.8000 0.5438
19 0.6000 1.0000 0.5974 0.5974 0.6000 0.6462
20 0.6000 0.8333 0.4974 0.4974 0.6000 0.6525
21 1 1 1 1 1 0.2347
22 0.9034 1.0000 0.9022 0.9022 0.9034 0.3885
23 0.8000 1 0.7974 0.7974 0.8000 0.4155
24 0.6667 1.0000 0.6641 0.6641 0.6667 0.5433
25 0.6000 1 0.5974 0.5974 0.6 0.5404
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Table 4  
Predicted chloride diffusion coefficients from SOM 5 × 5 nodes 

Cluster WBR Molarity NaOH 
(g)

Na2SiO3 
(g)

Water (ml) Chloride Diffusion 
Coefficient (m2/s)

1 0.5 10 648 324 1620 1.8170e-11

2 0.5 8.9697 581.0303 290.5152 1620 1.7847e-11

3 0.5 8.0000 518.0000 259.0000 1620 1.8673e-11

4 0.4548 8.0000 471.0323 235.5161 1473 1.9165e-11

5 0.4 8.0000 414 207 1296 1.9443e-11

6 0.5 10.0000 648 324 1620 1.5490e-11

7 0.4658 9.1053 545.3684 272.6842 1509 1.7656e-11

8 0.4567 8.8667 518.0000 259.0000 1479 1.8233e-11

9 0.3452 8.0000 357.5161 178.4839 1118 1.8592e-11

10 0.3452 8.0000 357.5161 178.4839 1118 1.8592e-11

11 0.5 10 648 324 1620 1.3425e-11

12 0.4400 10.5333 600.5333 300.2667 1425 1.5398e-11

13 0.4000 10.000 518.0000 259.0000 1296 1.8148e-11

14 0.3400 9.1000 405.3500 202.4500 1101 1.6593e-11

15 0.3000 8 311.0000 155.0000 972 1.7699e-11

16 0.5000 12 780 390 1620 9.6929e-12

17 0.4000 12.0000 622 311 1296 1.3216e-11

18 0.4000 10 518 259 1296 1.3857e-11

19 0.3000 9.7143 377.0000 188.4286 972 1.3776e-11

20 0.3000 10.000 388 194 972 1.7781e-11

21 0.5000 12 780 390 1620 5.3012e-12

22 0.4515 12.0000 703.3939 351.6970 1462 8.4333e-12

23 0.4000 12 622 311 1296 9.0224e-12

24 0.3000 12 466 233 972 1.1914e-11

25 0.3000 12 466 233 972 1.4555e-11

The SOM reveals suggestions on the lowest possible chloride diffusion coefficient 
in the formulation of geopolymer concrete. This geopolymer mix has a water/binder 
ratio of 0.5 coupled with a molarity of 12, as per the above SOM suggested. The optimal 
combination is cluster 21 (highlighted in bold), as depicted in Table 4, with the lowest 
chloride penetration depth and diffusion coefficient. 

Verification and Validation

The cluster formula obtained from the clustering analysis underwent a 5-fold cross-
validation process to confirm its reliability and evaluate the accuracy of the suggested 
mixing design and activator dosage in predicting chloride permeability. Two key validation 
metrics were employed: the mean absolute error (MAE) and the coefficient of determination 
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(R2). The MAE and R2 results were recorded as 1.515e-12 and 0.77, respectively, 
demonstrating that the cluster formula effectively forecasts chloride permeability based 
on the recommended mixing design. These validation outcomes are still confident in the 
cluster formula's capacity to guide selecting the ideal mixing design and activator dosages, 
ensuring the desired chloride resistance in geopolymer fly ash concrete. Figure 6 illustrates 
these validation results.

Figure 6. Performance of the clustering formula generated from the clustering analysis 

CONCLUSION
The application of SOM analysis offers a systematic and efficient method to examine a 
vast dataset comprising formulas and their associated diffusion coefficients. By utilizing 
AI technology, the analysis can unveil hidden patterns, relationships, and clusters within 
the data that may not be easily discernible using conventional approaches. This ability to 
uncover meaningful insights from complex datasets enhances the overall effectiveness and 
efficiency of the decision-making process.

This study demonstrates the significant advantages of utilizing AI technologies, 
specifically Self-Organizing Maps (SOM), for efficient data analysis and pattern recognition 
in material science.

1. Efficient Data Analysis: AI technologies like SOM enable swift and effective processing 
of large, complex, and multidimensional datasets. It allows for the identification of 
patterns and relationships that are difficult to detect manually.
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2. Pattern Recognition: SOM analysis revealed that a 0.5 water/binder ratio combined 
with 12M NaOH consistently resulted in the lowest diffusion coefficients. This pattern 
recognition capability aids decision-making by highlighting the most effective factors 
or combinations.

3. Optimization and Resource Efficiency: AI technology helps optimize formulas for 
desired outcomes, such as reducing diffusion coefficients. It leads to efficient use of 
materials, reduced costs, and minimized waste, thereby improving overall efficiency 
and sustainability.

By utilizing SOM in AI training, geopolymer concrete researchers and engineers 
can gain valuable insights into factors influencing durability, such as chloride diffusion, 
carbonation, and strength development. The SOM algorithm’s ability to visualize and cluster 
data assists in comprehending the complex interactions within the material, ultimately 
enhancing the accuracy and effectiveness of AI models in predicting geopolymer concrete 
durability.
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